

1 **Fabrication and characterization of a composite dosimeter based on natural
2 alexandrite**

3 Neilo Marcos Trindade^{*1,2}, Anna Luiza Metidieri Cruz Malthez³, Augusto de Castro Nascimento¹,
4 Ronaldo Santos da Silva⁴, Luiz Gustavo Jacobsohn², Elisabeth Mateus Yoshimura⁵.

5

6 ¹ Federal Institute of Education, Science and Technology of São Paulo, Department of Physics,
7 São Paulo, SP, Brazil.

8 ² Clemson University, Department of Materials Science and Engineering, Clemson, SC, USA.

9 ³ Federal University of Technology – Paraná, Curitiba, PR, Brazil.

10 ⁴ Federal University of Sergipe, São Cristovão, SE, Brazil.

11 ⁵ University of São Paulo, Institute of Physics, São Paulo, SP, Brazil.

12

13

14 *email: ntrindade@ifsp.edu.br

15

16

17

18

19

20

21

22 **ABSTRACT**

23 This work aims at demonstrating the fabrication of a new composite material based on the micron-
24 sized powder of the alexandrite mineral ($\text{BeAl}_2\text{O}_4:\text{Cr}^{3+}$) dispersed in a fluorinated polymer for
25 OSL dosimetric applications. Composites with 50 wt.% alexandrite powders were obtained and
26 characterized in their chemical composition, mechanical, and luminescent properties. Energy
27 dispersive X-ray spectroscopy mapping measurements of the pellets revealed a homogeneous
28 distribution of alexandrite particles throughout the organic matrix. PL measurements showed the
29 signal related to Cr^{3+} ions in alexandrite remained active besides all fabrication steps, and tensile
30 tests showed the pellets to have good ductility and tensile strength. The OSL results showed the
31 integrated intensity signal varied linearly with the beta irradiation dose and that the pellets were
32 stable at room temperature over time of 28 days. Nevertheless, improvements in the fabrication
33 process are necessary toward obtaining the same OSL intensity from different pellets.

34

35 **Keywords:** alexandrite, OSL, natural dosimeter, mechanical properties

36

37

38

39

40

41

42 **1. INTRODUCTION**

43 Natural and synthetic dosimetric materials are used for the determination of the irradiation
44 dose received in the environment as well as in medical and technological activities. Synthetic
45 dosimeters have the advantage of controlled synthesis and precise chemical composition thus
46 presenting high levels of reproducibility. On the other hand, natural dosimeters find application,
47 *e.g.*, in retrospective dosimetry and may be a lower-cost alternative to synthetic ones. Further, they
48 may be more readily available in large quantities [1].

49 Optically stimulated luminescence (OSL) has long established itself as a reliable technique
50 in dosimetry. The OSL signal arises from the recombination of charges optically released from
51 specific traps inside the material that was previously irradiated with ionizing radiation. The charge
52 carrier population in the traps is the result of the irradiation, and thus the OSL intensity is related
53 to the absorbed radiation dose [2-4]. The OSL signal obtained under stimulation with constant
54 light power is observed to progressively decrease as the charges are released from the traps (decay
55 curve) [3]. Due to the optical nature of the process, the OSL technique presents several advantages
56 such as simplicity of measurement, possibility of reevaluation of irradiation doses, and flexibility
57 for obtaining cumulated and individual dose measurements with the same detector [4, 5]. Since
58 the OSL signal can be monitored at room temperature without heating the material, the readout
59 process is less destructive and usually does not affect the defects involved in the luminescence
60 mechanism. On the other hand, the main disadvantage of this technique lies in the low number of
61 materials that present intrinsic characteristics suitable for application in radiation dosimetry [4, 6].
62 Therefore, due to the advantages of the OSL technique and the low number of commercially
63 available OSL detectors, there is need to discover and develop new OSL dosimetric materials [7-
64 10]. In terms of natural dosimetric materials, this effort has been mostly directed to accident

65 dosimetry and luminescence dating [3] using quartz and feldspar.

66 The material under consideration in this work is the mineral alexandrite ($\text{BeAl}_2\text{O}_4:\text{Cr}^{3+}$),
67 with the largest deposits in the world found in the Brazilian States of Bahia, Espírito Santo, and
68 Minas Gerais [11]. Alexandrite, a variety of the mineral Chrysoberyl, has a fraction of its Al ions
69 substituted by Cr ions and thus its unique optical properties. Chrysoberyl has a closed hexagonal
70 (hcp) structure and the unit cell contains four formula units ($Z = 4$). Eight Al^{3+} ions occupy
71 distorted octahedral sites and four Be^{2+} ions occupy distorted tetrahedral sites. The distortion in
72 the hcp structure gives rise to the appearance of two distinct crystallographic sites: Al_1 , located at
73 inversion sites, and Al_2 located at a reflection plane [12, 13]. The larger Cr^{3+} ions are preferably
74 incorporated into the larger Al_2 site that has an average Al–O bond length of 1.938 Å, instead of
75 the Al_1 site with an average Al–O bond length of 1.890 Å [14, 15]. According to the literature,
76 Cr^{3+} ions located in the Al_2 sites are responsible for the optical properties of alexandrite, including
77 laser emission [14, 16-18].

78 The motivation for this work lies on the fact that chrysoberyls contain 19.8 wt% BeO and
79 80.2 wt% Al_2O_3 [19] with both of these simple oxides being commercially used as OSL dosimeters.
80 $\text{Al}_2\text{O}_3:\text{C}$, first developed as a highly sensitive TL material [20], became widely used as an OSL
81 sensor because of its thermal stability close to room temperature, reproducibility, sensitivity to low
82 gamma-ray irradiation doses down to 1 μGy , low fading rate (<5 % per year), and the capability
83 for imaging radiation fields [21]. BeO was suggested as an OSL dosimeter in the 1970s [22], but
84 its properties were only investigated in detail in the late 1990s [23]. This dosimeter has been used
85 in photon and beta dosimetry [24] combined with being a low-cost material [25]. BeO presents
86 high sensitivity to ionization radiation, linear dose response in a broad range from 1 μGy to 5 Gy
87 [21], and negligible fading within long storage times (< 1% in 6 months) [25]. The low effective

88 atomic number ($Z_{\text{eff}} = 7.14$ [26]; 7.21 [21]) of BeO is near tissue-equivalent and allows for medical
89 applications [26].

90 The investigation of the potential of alexandrite as a dosimetric material was executed by
91 means of thermoluminescence measurements and first reported in [27, 28]. This paper focuses on
92 the development and the characterization of a dosimetric composite based on the powdered mineral
93 dispersed in a binder, a fluorinated polymer, toward achieving higher control and reproducibility
94 of the dosimetric response. The dosimetric properties of this new dosimetric composite are
95 reported here for the first time.

96

97 **2. MATERIALS AND METHODS**

98 *Preparation of powdered alexandrite*

99 The natural sample used in this work was originated from the State of Bahia, Brazil. The procedure
100 for obtaining alexandrite powder was as follows:

- 101 1. Crystals of green alexandrite were visually separated from the natural piece of rock.
- 102 2. These fragments were manually crushed and powdered using a Chiarotti porcelain mortar
103 and pestle.
- 104 3. The powder was sieved with a pair of Granutest sieves, selecting grain sizes smaller than
105 75 μm .
- 106 4. The sieved alexandrite powder was thermally treated at 400 °C for 1 h to clean any signal
107 previously accumulated in the material due to natural irradiation.

108 *Preparation of alexandrite composite pellets*

109 The composite pellets were obtained using a proprietary technique for OSL sheet
110 production developed at the Federal University of Technology in Curitiba, Paraná, Brazil. The

111 fabrication process consisted in mixing the alexandrite powder with an organic matrix based on a
112 fluorinated polymer on a 1:1 mass ratio. This matrix was chosen to embed the alexandrite powder
113 because it does not emit any OSL signal, and because it gives rise to a good sheet homogeneity.
114 Finally, 1.4 mm thick, 5.5 mm diameter, and 1.87 g/cm^3 average density pellets were obtained
115 from the original sheet using a handheld slot punch.

116 ***Characterization of alexandrite pellets***

117 The surface morphology and microstructure of the samples were imaged by means of
118 scanning electron microscopy (SEM) measurements in backscattered electron (BSE) mode, while
119 the local chemical composition was determined by energy dispersive X-ray spectroscopy (EDS)
120 measurements using a Hitachi S-3400N scanning electron microscope.

121 Tensile strength test of the composite was executed using Instron 5500R1125 and 4582
122 tensile analyzers. The analysis was carried out at room temperature at a speed of 10 mm/min using
123 a sample with a rectangular shape (6 mm length, 6.76 mm width, 1.45 mm thickness). From these
124 measurements, the Young's modulus, maximum load, and elongation were determined using the
125 Bluehill 2 Software.

126 Steady-state photoluminescence emission (PL) spectra were collected with a Horiba Jobin-
127 Yvon Spex FluoroLog 2 spectrofluorometer equipped with a Hamamatsu R928 photomultiplier
128 detector. The equipment has double monochromators for both excitation and detection, and a
129 450 W xenon lamp as the excitation source. The measurements were carried out at room
130 temperature with a 2 nm excitation slit, 1 nm emission slit, 0.5 nm wavelength increment step, and
131 0.5 s integration time.

132 OSL measurements were carried out using a commercial automated TL/OSL reader
133 produced by Risø National Laboratory (model DA-20). OSL luminescence was stimulated using

134 blue light emitting diodes (470 nm, FWHM = 20 nm) delivering 80 mW/cm² at the sample position
135 in CW mode. Each OSL measurement was carried out with 90% of the maximum LED power
136 density. The OSL signal was detected with a bialkali photomultiplier tube (PMT) behind an UV
137 transmitting broad-band glass filter (Hoya U-340, 7.5 mm thick) to block the stimulation light
138 while transmitting part of the OSL signal from the samples. Irradiation was performed at room
139 temperature using the built-in ⁹⁰Sr/⁹⁰Y beta source of the TL/OSL reader (dose rate of 10 mGy/s)
140 within a dose range from 100 to 500 mGy.

141

142 3. RESULTS AND DISCUSSION

143 Figure 1 shows the as-received alexandrite mineral before any processing (a), the powder
144 before sieving (b), the alexandrite: fluorinated polymer composite sheet (c), and the 5.5 mm
145 diameter pellet (d). Figure 2 shows a SEM image of the pellet surface (central image, top layer)
146 while composition mapping of selected chemical elements (C, Mg, Al, Ca, Fe) are shown in the
147 surrounding images. Visual analysis showed that each element presented a uniquely different
148 distribution in the sample. Since Be cannot be detected by EDS, the distribution of alexandrite
149 particles within the polymeric matrix was determined through the mapping of Al. These results
150 indicated the alexandrite particles were reasonably well homogeneously distributed in the matrix.
151 Fe is a common impurity of alexandrite and its distribution to regions rich in Al (*i.e.*, the
152 alexandrite phase). Because of the low concentration, Cr was not detected in this experiment. In a
153 previous work, we have shown that the natural mineral alexandrite contained other phases,
154 including mica, allanite, and apatite [28]. These secondary phases were revealed through the
155 presence and distribution of elements like Mg and Ca. Mg is commonly present in mica, and Ca is
156 commonly found in apatite. As expected, the distribution of these elements did not match that of

157 alexandrite (Al). C was originated from the polymeric matrix. Similar results were obtained from
158 other pellets analyzed the same way. According to previous work on the same group of alexandrite
159 samples, the Cr and Fe average concentration values are 0.7 wt.% and 1.9 wt.%, respectively [27].
160 As discussed before in the literature, Cr and Fe are responsible for the optical and luminescent
161 properties [14, 16, 18, 27-29].

162 In order to evaluate some of the effects of handling of the composite, the mechanical
163 response under tensile stress was investigated. A typical load/deformation curve is presented in
164 Fig. 3. The results showed a significant plastic deformation and energy absorption (toughness)
165 before the fracture, demonstrating the ductile nature of the composite material. Other results from
166 this analysis included the determination of the Young's modulus to be 0.25 MPa, maximum load
167 of 5.97 N with true strain of 1.52, and 356 % elongation. The shape of the load/deformation curve
168 showed that there was no linearity between tension and deformation. This was tentatively
169 explained by the crystallization of the polymer at large elongation values. The crystallization
170 decreases the flexibility of the polymer molecules, restricting the deformation and requiring a
171 higher than expected tension value. Consequently, the Young's modulus should be considered a
172 combination of the moduli of the crystalline and amorphous phases of the polymer [30]. In
173 summary, these results showed the composite to exhibit good ductility and tensile strength.

174 The luminescent properties of the composite pellet were characterized by PL measurements
175 excited at 420 nm, as shown in Fig. 4. These measurements were executed to verify if the
176 fabrication steps affected the Cr³⁺ ions emission centers. The emission spectrum showed one
177 narrow main line centered at 682 nm. This line was assigned to be the non-resolved superposition
178 of the R lines commonly associated with Cr³⁺ located at the Al₂ sites. In synthetic alexandrite
179 single crystals, these lines are found at around 678 and 680 nm at room temperature [13, 27, 31-

180 33], in reasonable agreement with the emission of the natural mineral. These results showed that
181 alexandrite micro-sized powder dispersed in the polymer matrix continued to exhibit its
182 luminescent properties.

183 Figure 5a shows the original OSL curve and results in semi-logarithmic scale is shown in
184 the inset. This result showed all the decay curves can be described by the same decay function that
185 linearly depends on the irradiation dose through the multiplicative constant. Figure 5b shows
186 normalized OSL decay curves obtained for a pellet irradiated with different doses. It was noted that
187 the shape of the OSL decay curve was independent of the irradiation dose, an important
188 characteristic for an OSL dosimetric material. It was also observed that the OSL response had
189 fallen to less than 5% of the initial intensity in about 20 s of continuous light stimulation.
190 Essentially all traps involved in the OSL process were emptied within 20 s of illumination with
191 the power used in the experiment. Moreover, Fig. 6 shows the average of the integrated OLS
192 intensity of six pellets as a function of the irradiation dose. The value of the OSL intensity was
193 taken as the integral of the decay curve in the first 20 s after the subtraction of the background
194 signal obtained from the integral of the curve in the 21-40 s time interval. The average integrated
195 OSL signal increased linearly with the irradiation dose, as demonstrated by the linear best fit shown
196 in the figure that achieved a regression coefficient of 0.997. For the same irradiation dose, the
197 percentual standard deviation of the response of the six different pellets was about 7 % in relation
198 to the average value.

199 In order to test the reproducibility of the OSL signal, three OSL measurements were
200 obtained from each of six different pellets irradiated up to 300 mGy. A 300 s illumination was
201 carried before each OSL measurement to empty all traps. The integrated OSL intensity versus the
202 measurement tag number is shown in Fig. 7 for each pellet. For each pellet, the OSL signal was

203 found to be reproducible when re-measured under the same conditions. In fact, the coefficient of
204 variance (CV = standard deviation/ mean value) of each pellet did not exceed 5 %, with pellet #1
205 having a CV as low as 0.65%. On the other hand, when comparing the results among the six
206 different pellets, the CV rises to 17 %. While further work is still necessary to fully understand the
207 reasons for the response variation among different pellets, it was found that the mass of the pellets
208 presented a variation of about 10 % and thus a likely variation in the content of the mineral powder.
209 Also, even if all pellets had the same mass of mineral powder, variations of the amount of the
210 alexandrite phase are expected in a natural mineral.

211 Fading tests were performed for 3 different storage times in the dark using 3 different
212 pellets. These results are summarized in Fig. 8 where the average intensity values normalized to
213 the corresponding initial value obtained at $t = 0$ s and their respective standard deviations are
214 shown as a function of storage time. While these results revealed a fast fading of about 20 % within
215 the first hour of storage, no further fading was observed over a period of 28 days with the pellets
216 retaining about 80 % of the initial signal.

217 CONCLUSIONS

218 This work aims at demonstrating the fabrication of a new composite material based on the
219 micron-sized powder of the alexandrite mineral dispersed in a fluorinated polymer for OSL
220 dosimetric applications. Composites with 50 wt.% alexandrite powders were obtained and
221 characterized in their chemical composition, mechanical, and luminescent properties. EDS
222 mapping measurements of the pellets revealed a homogeneous distribution of alexandrite particles
223 throughout the organic matrix, while PL measurements showed the signal related to Cr^{3+} ions in
224 alexandrite remained active besides all fabrication steps. Also, the pellets showed good ductility
225 and tensile strength. The OSL results showed important characteristics for dosimetry, including

226 that the integrated intensity signal varied linearly with the beta irradiation dose, and that each pellet
227 was stable at room temperature over long times (28 days). Nevertheless, improvements in the
228 fabrication process are necessary toward obtaining the same OSL intensity from different pellets.

229 **ACKNOWLEDGMENTS**

230 A.C. Nascimento is grateful for the scholarship received from the National Council for Scientific
231 and Technological Development (CNPq). E. M. Yoshimura acknowledges CNPq, Grant
232 #307375/2015-3. Funding for this work was provided by the Brazilian agency São Paulo Research
233 Foundation (FAPESP), Grant #2017/11663-1. This material is based upon work supported by the
234 National Science Foundation under Grant #1653016.

235

236 **REFERENCES**

237 [1] D.N. Souza, M.E.G. Valerio, J.F. de Lima, L.V.E. Caldas, Nuclear Instruments and Methods
238 in Physics Research Section B: Beam Interactions with Materials and Atoms, 166-167 (2000),
239 pp. 209-214.

240 [2] A.S. Pradhan, J.I. Lee, J.L. Kim, Journal of Medical Physics / Association of Medical
241 Physicists of India, 33 (2008), pp. 85-99.

242 [3] L. Bøtter-Jensen, Development of Optically Stimulated Luminescence Techniques using
243 Natural Minerals and Ceramics, and their Application to Retrospective Dosimetry, Nuclear
244 Safety Research and Facilities Department, University of Copenhagen, Copenhagen, 2000, pp.
245 185.

246 [4] E.G. Yukihara, S.W.S. McKeever, Optically Stimulated Luminescence: Fundamentals and
247 Applications, UK: John Wiley and Sons, West Sussex, 2011.

248 [5] A.L.M.C. Malthez, M.B. Freitas, E.M. Yoshimura, V.L.S.N. Button, Radiation Physics and
249 Chemistry, 95 (2014), pp. 134-136.

250 [6] E.G. Yukihara, S.W.S. McKeever, Physics in Medicine & Biology, 53 (2008), p. R351.

251 [7] E.G. Yukihara, E.D. Milliken, L.C. Oliveira, V.R. Orante-Barrón, L.G. Jacobsohn, M.W.
252 Blair, Journal of Luminescence, 133 (2013), pp. 203-210.

253 [8] J.R. Hazelton, E.G. Yukihara, L.G. Jacobsohn, M.W. Blair, R. Muenchausen, Radiation
254 Measurements, 45 (2010), pp. 681-683.

255 [9] M.W. Blair, L.G. Jacobsohn, S.C. Tornga, O. Ugurlu, B.L. Bennett, E.G. Yukihara, R.E.
256 Muenchausen, Journal of Luminescence, 130 (2010), pp. 825-831.

257 [10] E.M. Yoshimura, E.G. Yukihara, Nuclear Instruments and Methods in Physics Research
258 Section B: Beam Interactions with Materials and Atoms, 250 (2006), pp. 337-341.

259 [11] M.S. Basilio, A. Pedrosa-Soares, H. Jordt-Evangelista, Revista Geonomos, 8 (2000), p. 8.

260 [12] B.K. Sevast'yanov, Crystallography Reports, 48 (2003), pp. 989-1011.

261 [13] N.M. Trindade, A. Tabata, R.M.F. Scalvi, L.V.d.A. Scalvi, Materials Sciences and
262 Applications, 2 (2011), p. 4.

263 [14] S.-U. Weber, M. Grodzicki, W. Lottermoser, G.J. Redhammer, G. Tippelt, J. Ponahlo, G.
264 Amthauer, Physics and Chemistry of Minerals, 34 (2007), pp. 507-515.

265 [15] R.M.F. Scalvi, M.S. Li, L.V.A. Scalvi, Physics and Chemistry of Minerals, 31 (2005), pp.
266 733-737.

267 [16] K.L. Schepler, Journal of Applied Physics, 56 (1984), pp. 1314-1318.

268 [17] D.A. Vinnik, D.A. Zhrebtssov, S.A. Archugov, M. Bischoff, R. Niewa, Crystal Growth &
269 Design, 12 (2012), pp. 3954-3956.

270 [18] R.M.F. Scalvi, L. de Oliveira Ruggiero, M. Siu Li, Powder Diffraction, 17 (2002), pp. 135-
271 138.

272 [19] V.Y. Ivanov, V.A. Pustovarov, E.S. Shlygin, A.V. Korotaev, A.V. Kruzhakov, Physics of
273 the Solid State, 47 (2005), pp. 466-473.

274 [20] M.S. Akselrod, V.S. Kortov, D.J. Kravetsky, V.I. Gotlib, Radiation Protection Dosimetry,
275 33 (1990), pp. 119-122.

276 [21] M.S. Akselrod, AIP Conference Proceedings, 1345 (2011), pp. 274-302.

277 [22] C.R. Rhyner, W.G. Miller, Health Physics, 18 (1970), pp. 681-684.

278 [23] E. Bulur, H.Y. Göksu, Radiation Measurements, 29 (1998), pp. 639-650.

279 [24] A. Jahn, M. Sommer, J. Henniger, Radiation Measurements, 71 (2014), pp. 104-107.

280 [25] M. Sommer, J. Henniger, Radiation Protection Dosimetry, 119 (2006), pp. 394-397.

281 [26] M. Sommer, A. Jahn, J. Henniger, Radiation Measurements, 43 (2008), pp. 353-356.

282 [27] N.M. Trindade, H. Kahn, E.M. Yoshimura, *Journal of Luminescence*, 195 (2018), pp. 356-
283 361.

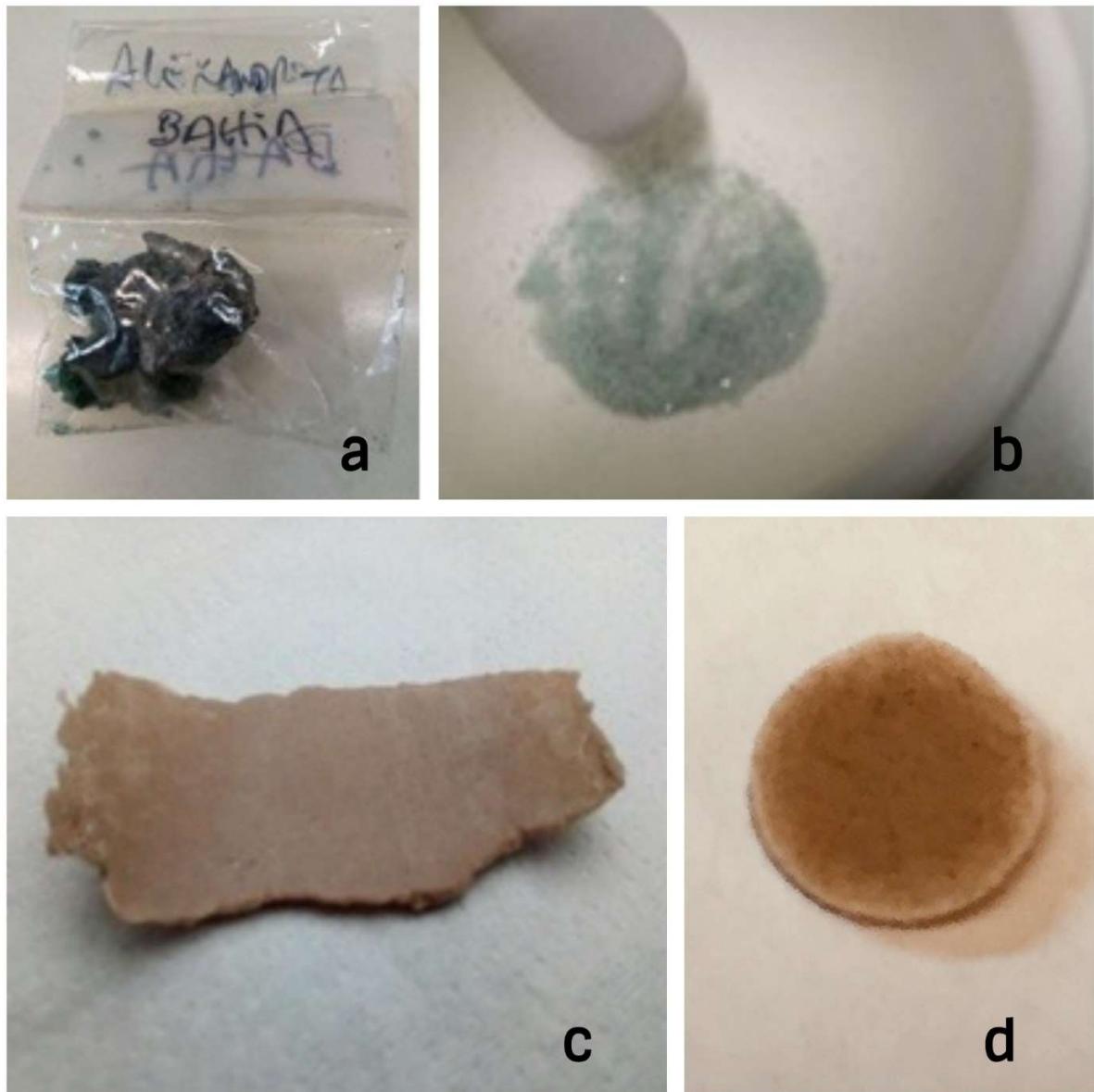
284 [28] N.M. Trindade, M.R. Cruz, H. Kahn, L.G. Jacobsohn, E.M. Yoshimura, *Journal of*
285 *Luminescence*, (submitted, 2018).

286 [29] N.M. Trindade, R.M.F. Scalvi, L.V.A. Scalvi, *Energy and Power Engineering*, 2 (2010), p.
287 7.

288 [30] W.D. Callister, *Materials science and engineering: An introduction*, 7th ed., John Wiley &
289 Sons., New York, 2007.

290 [31] N. Ollier, Y. Fuchs, O. Cavani, A.H. Horn, S. Rossano, *European Journal of Mineralogy*, 27
291 (2015), pp. 783-792.

292 [32] R.C. Powell, L. Xi, X. Gang, G.J. Quarles, J.C. Walling, *Physical Review B*, 32 (1985), pp.
293 2788-2797.

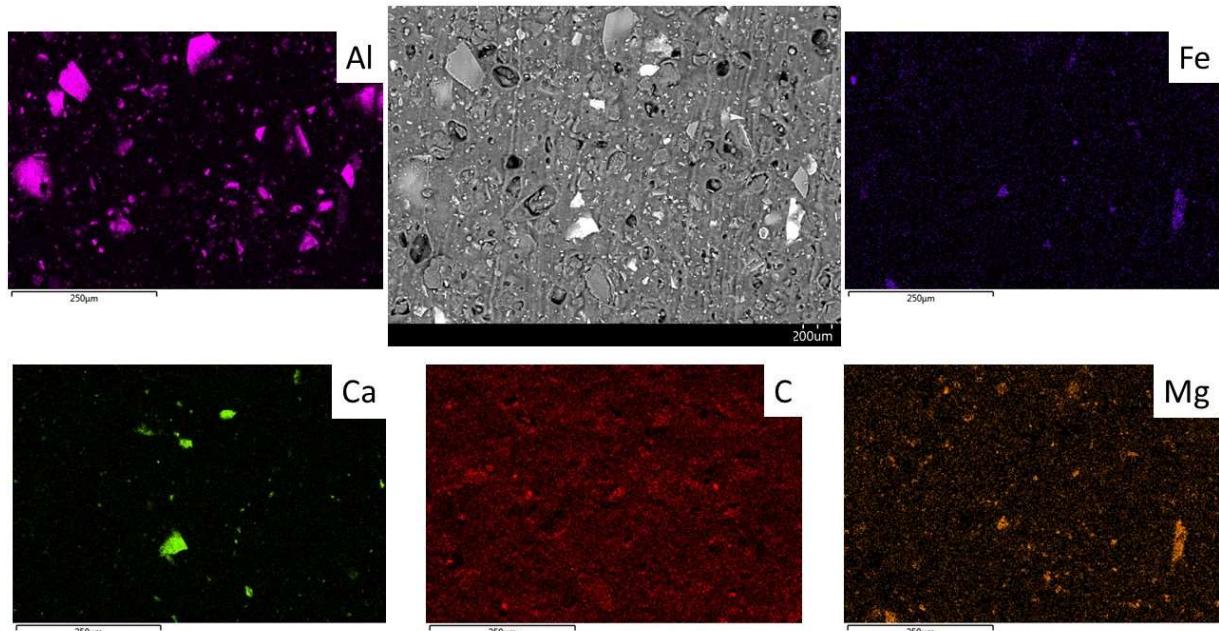

294 [33] A.B. Suchocki, G.D. Gilliland, R.C. Powell, J.M. Bowen, J.C. Walling, *Journal of*
295 *Luminescence*, 37 (1987), pp. 29-37.

296

297

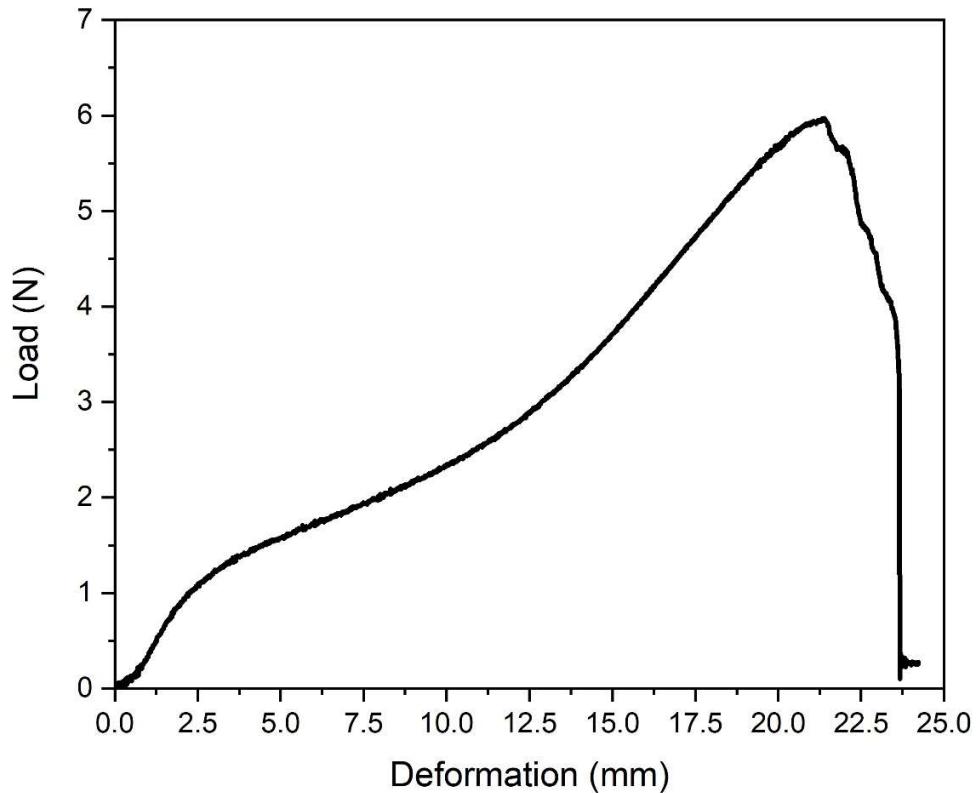
298 **FIGURE CAPTIONS**

299 **Figure 1** - a) The as-received alexandrite mineral before any processing, b) the powder before
300 sieving, c) the alexandrite: fluorinated polymer composite sheet, and d) the 5.5 mm diameter pellet.



301

302


303

304 **Figure 2** - SEM image of the pellet surface (central image, top layer) together with the mapping
305 of selected chemical elements: C, Mg, Al, Ca, Fe (surrounding images).

306
307
308
309
310
311
312
313
314
315
316
317

318 **Figure 3** - Load/deformation curve of the composite sheet.

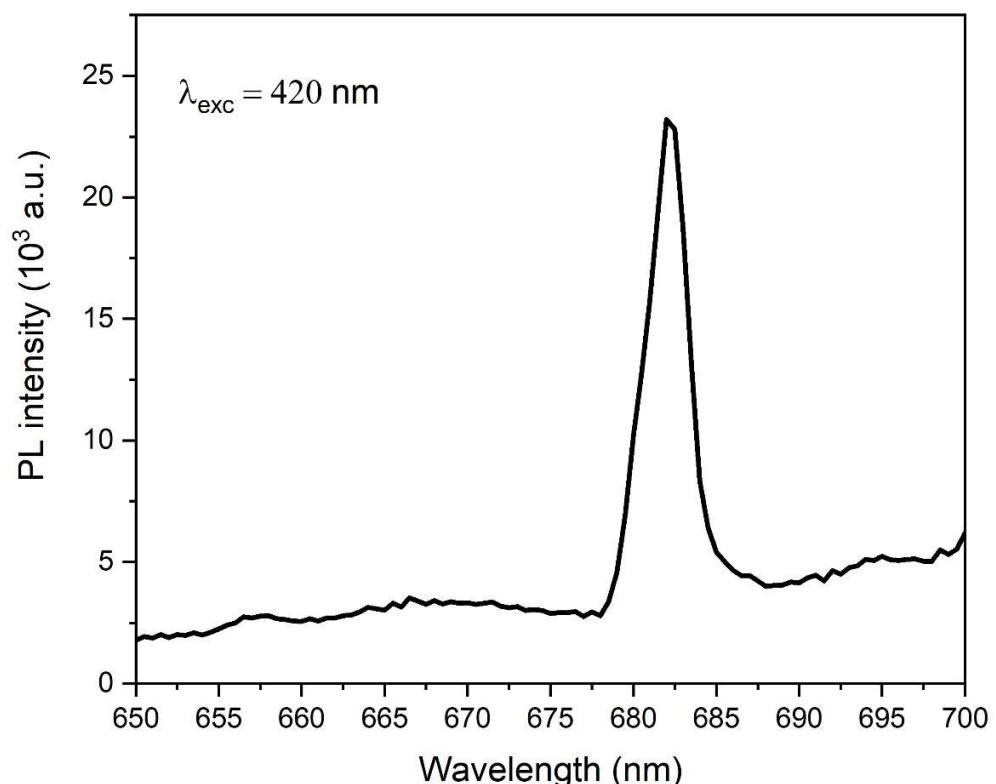
319

320

321

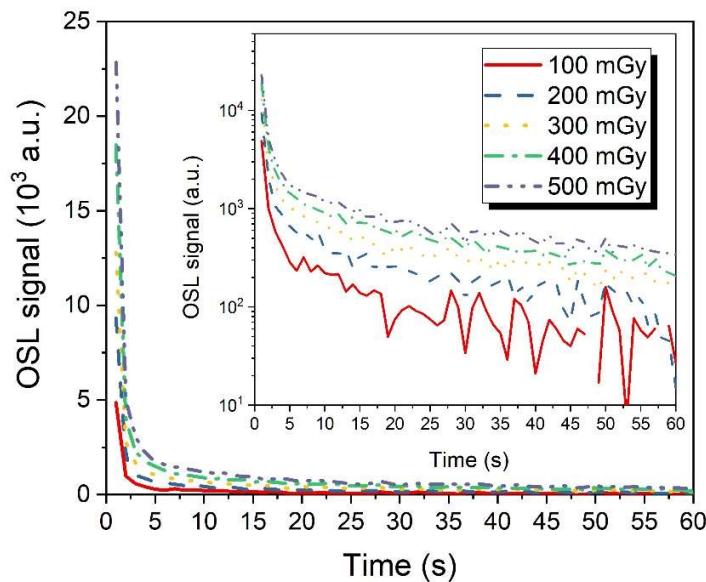
322

323

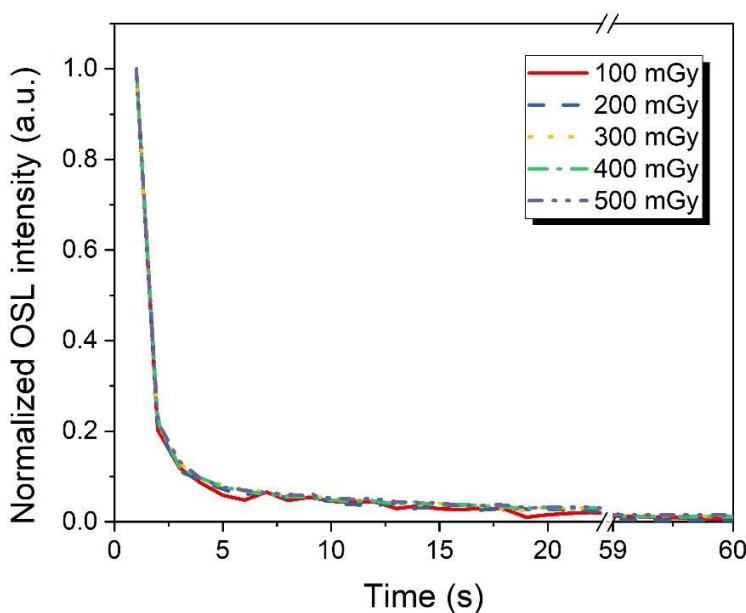

324

325

326

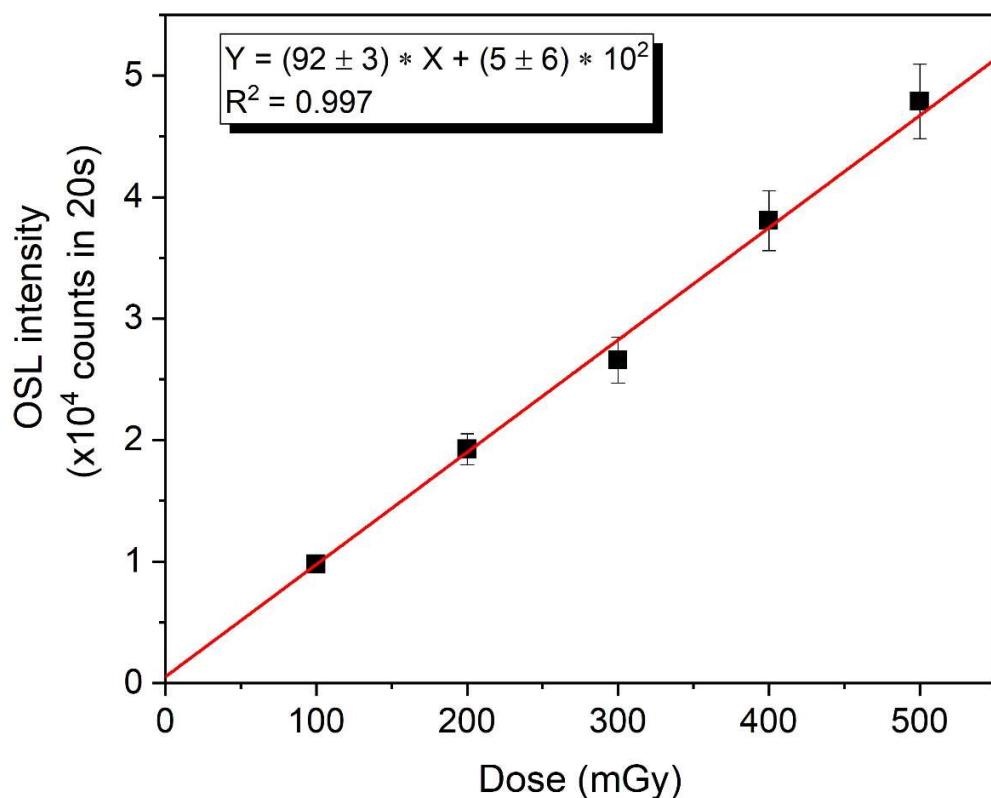

327

328 **Figure 4** - Photoluminescence spectrum of a composite pellet obtained under excitation at 420
329 nm.



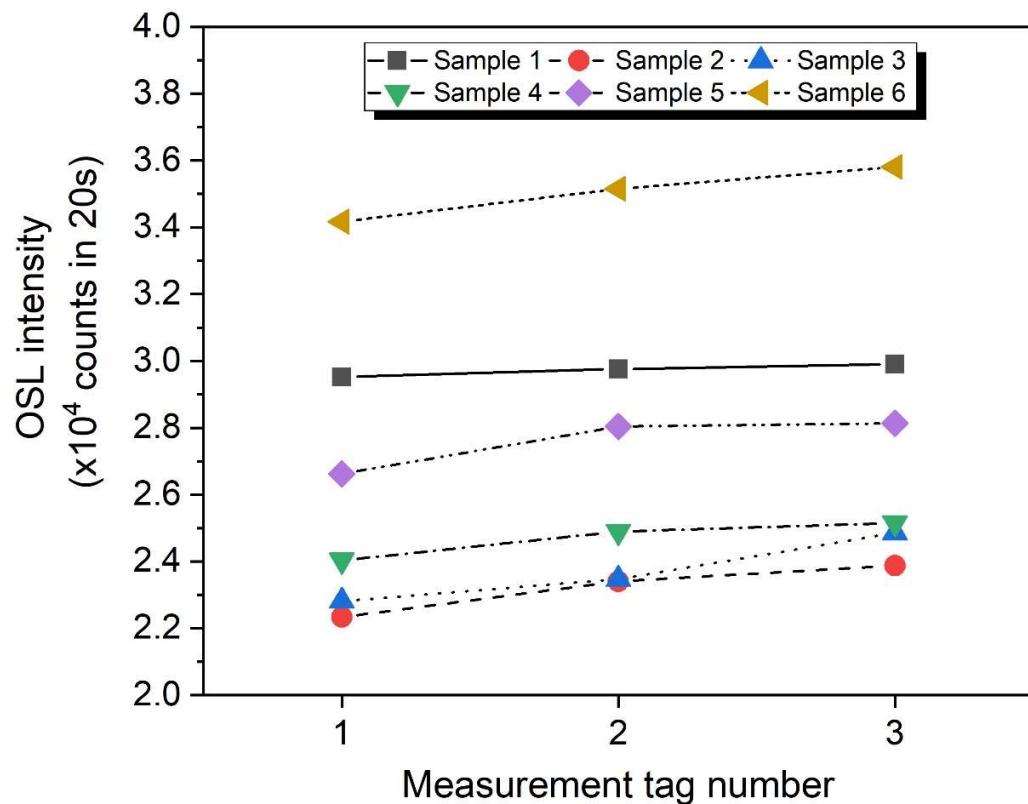
330
331
332
333
334
335
336

337 **Figure 5** – (a) Original OSL decay curve and results in semi-logarithmic scale in the inset (b)
338 Normalized OSL intensity decay curves of a composite pellet obtained for different beta irradiation
339 doses.

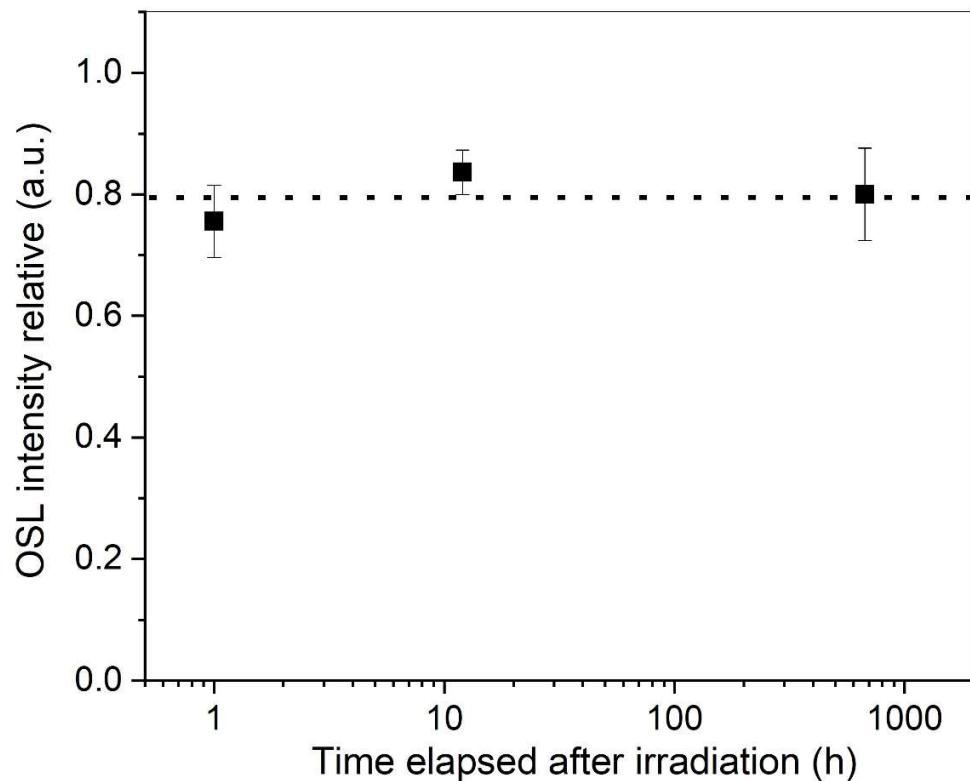

340

341

342


343 **Figure 6** – Average OSL intensity from six different composite pellets as a function of the beta
344 irradiation dose. The error bars correspond to the percentual standard deviation in relation to the
345 average value. The red straight line corresponds to the linear best fit indicated in the box.

346


347

348 **Figure 7** – Reproducibility evaluation of the OSL response: integrated OSL intensity of three
349 OSL measurements obtained from six different pellets irradiated up to 300 mGy.

350
351
352
353
354
355

356 **Figure 8** - Average integrated OSL intensity values normalized to the corresponding initial value
357 obtained at $t = 0$ s and their respective standard deviations as a function of storage time.

358